等離子體納米結構非線性光學表征新方案:卓立漢光偏振二次諧波掃描成像系統實現偏振分辨測量
本文引用自華中科技大學韓俊波老師課題組2018年在NanoScale雜志上發表的相關文章。
本文已經經過作者同意,進行引用。
相關信息如下:
Plasmon-enhanced versatile optical nonlinearities in a Au–Ag–Au multi-segmental
hybrid structure
Nanoscale, 2018, 10, 12695–12703
DOI: 10.1039/c8nr02938e
等離子體納米結構因其顯著的線性和非線性光學特性,在非線性光學、增強基底和光子器件領域引起了廣泛關注。這些結構具有獨*的光子-電子相互作用行為、較大的表面等離子體共振(SPR)吸收和強烈的局域場限制。為了實現大的局域電磁場增強和寬SPR波長可調性,已經開發了許多物理和化學技術來制造金屬納米結構。許多研究工作已經開展,以研究不同介電環境下的納米顆粒、納米三角形、納米星和納米棒等的線性和非線性特性。由于模擬結果如預期所示,并且能夠很好地指導實驗,因此取得了巨大成功。這令人興奮,因為可以通過將多個等離子體單元組裝在一起,設計和制造具有特殊功能和強光-物質相互作用的復雜結構。
有序的納米棒陣列是在通過兩步陽極氧化法制備的陽極氧化鋁(AAO)膜中生長的。通過改變沉積時間控制每段納米棒或納米棒部分的長度。在含有HAuCl4·4H2O(0.01 M)和H2SO4酸(0.1 M)的電解液中,通過交流電解(50 Hz,11 V交流)在AAO膜中沉積金納米棒,沉積時間為280秒。在含有AgNO3(0.0176 M)和H2SO4酸(0.16 M)的電解液中沉積銀納米棒,沉積時間為40秒。Au–Ag–Au納米棒的沉積如下:納米棒的第一段和最后一段(金)在與金納米棒沉積相同的條件下沉積120秒,第二段(銀)在與銀納米棒沉積相同的條件下沉積。
本文中,使用紫外-可見-近紅外光譜光度計記錄吸收光譜,場發射掃描電子顯微鏡和場發射透射電子顯微鏡觀察AAO膜和納米棒的形貌。
同時,使用鈦寶石激光器作為光源,脈沖寬度為130 fs,重復率為76 MHz。使用衰減器調節激發功率,使用半波片和Glan-Taylor棱鏡改變激光偏振。激光束通過凸透鏡聚焦。混合結構固定在旋轉平臺上,該平臺安裝在電動平移臺上。透射激光由探測器收集。使用光闌在開孔狀態和閉孔狀態之間切換,進行了ZScan的相關測試。
SHG和PL的測量,通過使用75 mm凸透鏡將800 nm激發激光聚焦到混合結構上進行SHG測量,入射角為65°。通過Andor的500mm焦距光譜儀與EMCCD收集光譜。使用長波通和短波通濾光片凈化信號。PL測量與SHG設置相似,只是濾光片不同。
圖1. 原文中圖4的ZScan掃描結果
圖2. 原文中的圖6為偏振依賴的SHG結果
圖3. 原文中為圖7的SHG激發功率依賴結果
圖4. 原文中為圖8的Ag納米棒的SHG強度與激發功率的關系
從本文中,其實可以很明顯看到偏振甚至于激發功率強度變化與SHG的關系。
那么,為什么SHG對偏振例如p光和s光有如此強的依賴關系呢?我們可以從本文中找到一些答案,并且與大家進行討論。
p偏振光(偏振方向平行于入射平面)能夠顯著增強二次諧波生成(SHG)效率,主要是通過以下幾個機制實現的:
1. 增強局域電場
電場方向一致性:p偏振光的電場分量與納米結構的長軸方向一致。這種方向一致性使得電場能夠更有效地與納米結構相互作用,從而在納米結構的局域區域產生更強的電場增強。
表面等離子體共振(SPR)模式:p偏振光能夠更有效地激發縱向表面等離子體共振(LSPR)模式。LSPR模式的激發會導致納米結構局域電場的顯著增強,從而提高SHG的效率。具體來說,LSPR模式的激發使得納米結構的局域電場強度顯著增加,這直接導致了SHG信號的增強。
2. 實驗觀察
實驗結果:在實驗中,p偏振光激發下的SHG強度顯著高于s偏振光激發下的強度。例如,在Ag納米棒混合結構中,p偏振光激發下的SHG強度比s偏振光激發下的強度高一個數量級以上。這表明p偏振光能夠更有效地激發SPR模式,從而增強SHG信號。
飽和現象:在高激發功率下,p偏振光激發下的SHG強度會出現飽和現象。這是因為部分激發能量會轉化為光致發光(PL),從而抑制了SHG的進一步增強。這種飽和現象在s偏振光激發下不明顯,因為s偏振光激發下的SHG強度本身較低。
3. 數值模擬
FDTD模擬:通過有限差分時域(FDTD)模擬,可以計算不同偏振狀態下納米棒的電場分布和局域場增強因子(fE)。模擬結果表明,p偏振光在納米棒的長軸方向上產生了更強的局域電場增強,這與實驗觀察到的SHG強度的偏振依賴性一致。具體來說,p偏振光在納米棒的長軸方向上產生了顯著的電場增強,而s偏振光在納米棒的短軸方向上產生的電場增強較弱。
4. 具體機制
電場增強:p偏振光的電場分量與納米結構的長軸方向一致,能夠更有效地激發LSPR模式。這種激發導致局域電場的顯著增強,從而提高SHG的效率。
相位匹配條件:在某些情況下,p偏振光能夠更好地滿足相位匹配條件。相位匹配條件是實現高效SHG的關鍵因素之一。p偏振光能夠更有效地激發LSPR模式,從而更好地滿足相位匹配條件,提高SHG效率。
非線性極化率:p偏振光能夠更有效地激發納米結構的非線性極化率,從而提高SHG的效率。非線性極化率的增強直接導致了SHG信號的增強。
5. 具體數據
Ag納米棒混合結構:在p偏振光激發下,Ag納米棒混合結構的SHG強度比s偏振光激發下的強度高一個數量級以上。這表明p偏振光能夠更有效地激發Ag納米棒的LSPR模式,從而顯著增強SHG信號。
Au納米棒混合結構:在p偏振光激發下,Au納米棒混合結構的SHG強度也顯著高于s偏振光激發下的強度,但整體強度仍低于Ag納米棒混合結構。這表明Au的SPR效應雖然較強,但不如Ag顯著。
Au–Ag–Au納米棒混合結構:在p偏振光激發下,Au–Ag–Au納米棒混合結構的SHG強度介于Au和Ag納米棒混合結構之間。這表明通過合理設計納米結構,可以實現對SHG強度的有效調控。
結論
p偏振光能夠顯著增強SHG效率,主要是通過增強局域電場、更好地滿足相位匹配條件以及提高非線性極化率來實現的。通過合理選擇激發光的偏振狀態,可以優化SHG信號的強度,從而提高非線性光學測量的靈敏度和效率。
以上的工作,恭喜華中科技大學韓俊波教授課題組,卓立漢光亦有幸參與。
希望以上的信息對大家有幫助哦,歡迎各位咨詢我們相關的產品。
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。